Mixtures of skew-t factor analyzers

نویسندگان

  • Paula M. Murray
  • Ryan P. Browne
  • Paul D. McNicholas
چکیده

In this paper, we introduce a mixture of skew-t factor analyzers as well as a family of mixture models based thereon. The mixture of skew-t distributions model that we use arises as a limiting case of the mixture of generalized hyperbolic distributions. Like their Gaussian and t-distribution analogues, our mixture of skew-t factor analyzers are very well-suited to the model-based clustering of high-dimensional data. Imposing constraints on components of the decomposed covariance parameter results in the development of eight flexible models. The alternating expectation-conditional maximization algorithm is used for model parameter estimation and the Bayesian information criterion is used for model selection. The models are applied to both real and simulated data, giving superior clustering results compared to a well-established family of Gaussian mixture models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixtures of common t-factor analyzers for clustering high-dimensional microarray data

MOTIVATION Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the speci...

متن کامل

Calibration of Infra-red CO(2) Gas Analyzers.

Precision gas mixing pumps produce CO(2) gas mixtures for the calibration of infra-red CO(2) gas analyzers equivalent in accuracy to the standard CO(2) gas mixtures (+/- 1%) supplied by the National Bureau of Standards, Washington, D. C.The calibration of infra-red gas analyzers by the pressure difference method and by concentration differences did not agree. A factor of 0.709 was necessary to ...

متن کامل

Mixtures of robust probabilistic principal component analyzers

Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of r...

متن کامل

Adaptive Mixtures of Factor Analyzers

A mixture of factor analyzers is a semi-parametric density estimator that generalizes the well-known mixtures of Gaussians model by allowing each Gaussian in the mixture to be represented in a different lower-dimensional manifold. This paper presents a robust and parsimonious model selection algorithm for training a mixture of factor analyzers, carrying out simultaneous clustering and locally l...

متن کامل

Signal Modeling and Classification Using a Robust Latent Space Model Based on t Distributions

Factor analysis is a statistical covariance modeling technique based on the assumption of normally distributed data. A mixture of factor analyzers can be hence viewed as a special case of Gaussian (normal) mixture models providing a mathematically sound framework for attribute space dimensionality reduction. A significant shortcoming of mixtures of factor analyzers is the vulnerability of norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2014